

ELIZADE UNIVERSITY, ILARA MOKIN, ONDO STATE DEPARTMENT OF PHYSICAL AND CHEMICAL SCIENCES 2017/2018 SECOND SEMESTER B.Sc. DEGREE EXAMINATIONS

BCH 404: ADVANCED ENZYMOLOGY

Instructions: Answer any four (4) questions	ime: 2 Hrs
1. (a) For a bisubstrate reaction mechanism which is "ordered sequential", derive the rate of a elaborate how the real kinetic parameters, Kia, K., K., and Vmax will be obtained	reaction and then
$E + A \iff EA + B \iff EAB \iff EPQ \iff P + EQ \iff E + Q$	(15marks)
(b) Elaborate on the effects of pH and temperature on the rate of enzymatic catalysis	(10 marks)
 (a) According to Luisi, 1979, enzymes are regarded as macromolecules. Highlight six post this phenomenon and discuss any TWO 	ssible reasons for (10 marks)
(b) Rearrange the Arrhenius equation, $k = Ae^{-E\alpha/RT}$ to give the Arrhenius plot	(2 marks)
(c) For a typical bisubstrate reaction mechanism that is "ping pong", determine how the resparameters (K., K., and Vmax) will be obtained	al kinetic (8 marks)
(d) Describe the Theorell-Chance mechanism	(5 marks)
3. (a) Using BOTH steady state AND equilibrium approach, derive from the first principles for a single substrate enzyme catalyzed reaction scheme indicated below:	the reaction rate
$E + S \longrightarrow ES \longrightarrow E + P$	(15 marks)
(b) Using specific examples explain the phenomena of allostery and feedback inhibition	(4 marks)
(c) Discuss the "induced fit" and the "lock and key" models of enzymatic catalysis, illustrations where possible.	Use appropriate (6 marks)
4. (a) Derive the Hill equation for the binding reaction between hemoglobin and oxygen	
$Hb + nO_2 \longleftrightarrow Hb(O_2)n$	(15 marks)
(b) Using an appropriate sketch, illustrate the difference between enzymes that obey Miche kinetics and those that display positive and negative cooperativity.	ealis- Menten (<i>5 marks)</i>

(c) Explain the significance of the Hill coefficient at n=1, $n \ge 1$ and $n \le 1$

(5 marks)

5. (a) From the table below, obtain the value for the activation energy, E..

T (K)	Vmax (Units/mg protein)
300	15.5
308	30.8
318	43.5
328	60.9
338	72.3

 $(R = 8.314 \text{ J mol}^{-1}\text{K}^{-1})$

(3 marks)

- (b) Using mathematical manipulation as well as the corresponding diagnostic plots, rearrange the simple Michealis-Menten's equation to obtain the Lineweaver-Burk, Eadie-Hoftsee and Hanes-Woolf plots.

 (12 marks)
- (c) Discuss the mechanism of action of either Ribonuclease A, Chymotrypsin or Lysozyme. (10 marks)
- 6. (a) Define protein engineering and the discuss briefly the approaches involved in engineering a desired protein.

 (4 marks)
 - (b) Describe very briefly ALL of the following:

i. enzyme assay

(2 marks)

ii. analytical assays

(2 marks)

ii. enzyme assay techniques

(2 marks)

iii. criteria for purity

(2 marks)

(c.) complete the typical purification table below

	Volume	Activity (U/ml)	Protein (mg/ml)	Total Activity (U)	Total Protein (mg)	Specific Activity (U/mg)	Yield	Purification Fold
Crude	12	75	1.2			•	1()()	1.0
50% Ammonium Sulphate Fractionation and Dialysis	5	56	1.1			,		
Gel-Filtration Chromatography on Sephadex G- 100	20	35	0.05					

(3 marks)

d. Derive the rate of reaction for a competitive enzyme inhibition and show how the apparent K_m and V_{mx} values can be obtained from the diagnostic plot.

(10 marks)